Back to Search Start Over

AdvIRL: Reinforcement Learning-Based Adversarial Attacks on 3D NeRF Models

Authors :
Nguyen, Tommy
Ergezer, Mehmet
Green, Christian
Publication Year :
2024

Abstract

The increasing deployment of AI models in critical applications has exposed them to significant risks from adversarial attacks. While adversarial vulnerabilities in 2D vision models have been extensively studied, the threat landscape for 3D generative models, such as Neural Radiance Fields (NeRF), remains underexplored. This work introduces \textit{AdvIRL}, a novel framework for crafting adversarial NeRF models using Instant Neural Graphics Primitives (Instant-NGP) and Reinforcement Learning. Unlike prior methods, \textit{AdvIRL} generates adversarial noise that remains robust under diverse 3D transformations, including rotations and scaling, enabling effective black-box attacks in real-world scenarios. Our approach is validated across a wide range of scenes, from small objects (e.g., bananas) to large environments (e.g., lighthouses). Notably, targeted attacks achieved high-confidence misclassifications, such as labeling a banana as a slug and a truck as a cannon, demonstrating the practical risks posed by adversarial NeRFs. Beyond attacking, \textit{AdvIRL}-generated adversarial models can serve as adversarial training data to enhance the robustness of vision systems. The implementation of \textit{AdvIRL} is publicly available at \url{https://github.com/Tommy-Nguyen-cpu/AdvIRL/tree/MultiView-Clean}, ensuring reproducibility and facilitating future research.<br />Comment: Accepted to The AAAI-25 Workshop on Artificial Intelligence for Cyber Security (AICS)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.16213
Document Type :
Working Paper