Back to Search Start Over

Electrokinetic nanofluidic sensing of DNA nanostar condensate

Authors :
Chou, Kuang-Hua
Eden, Alex
Huber, David
Pennathur, Sumita
Fygenson, Deborah Kuchnir
Publication Year :
2024

Abstract

We demonstrate electronic sensing of DNA nanostar (NS) condensate. Specifically, we use electrokinetic nanofluidics to observe and interpret how temperature-induced NS condensation affects nanochannel current. The increase in current upon filling a nanochannel with NS condensate indicates that its electrophoretic mobility is about half that of a single NS and its effective ionic strength is $\sim35$\% greater than that of 150mM NaCl in phosphate buffer. $\zeta$-potential measurements before and after exposure to NS show that condensate binds the silica walls of a nanochannel more strongly than individual NS do under identical conditions. This binding increases electroosmotic flow, possibly enough to completely balance, or even exceed, the electrophoretic velocity of NS condensate. Although the current through a flat nanochannel is erratic in the presence of NS condensate, tilting the nanochannel to accumulate NS condensate at one entrance (and away from the other) results in a robust electronic signature of the NS phase transition at temperatures $T_c$ = $f$([NaCl]) that agree with those obtained by other methods. Electrokinetic nanofluidic detection and measurement of NS condensate thus provides a foundation for novel biosensing technologies based on liquid-liquid phase separation.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.08673
Document Type :
Working Paper