Back to Search
Start Over
B-MASTER: Scalable Bayesian Multivariate Regression Analysis for Selecting Targeted Essential Regressors to Identify the Key Genera in Microbiome-Metabolite Relation Dynamics
- Publication Year :
- 2024
-
Abstract
- The gut microbiome significantly influences responses to cancer therapies, including immunotherapies, primarily through its impact on the metabolome. Despite some existing studies addressing the effects of specific microbial genera on individual metabolites, there is little to no prior work focused on identifying the key microbiome components at the genus level that shape the overall metabolome profile. To bridge this gap, we introduce B-MASTER (Bayesian Multivariate regression Analysis for Selecting Targeted Essential Regressors), a fully Bayesian framework incorporating an L1 penalty to promote sparsity in the coefficient matrix and an L2 penalty to shrink coefficients for non-major covariate components simultaneously, thereby isolating essential regressors. The method is complemented with a scalable Gibbs sampling algorithm, whose computational speed increases linearly with the number of parameters and remains largely unaffected by sample size and data-specific characteristics for models of fixed dimensions. Notably, B-MASTER achieves full posterior inference for models with up to four million parameters within a practical time-frame. Using this approach, we identify key microbial genera influencing the overall metabolite profile, conduct an in-depth analysis of their effects on the most abundant metabolites, and investigate metabolites differentially abundant in colorectal cancer patients. These results provide foundational insights into the impact of the microbiome at the genus level on metabolite profiles relevant to cancer, a relationship that remains largely unexplored in the existing literature.
- Subjects :
- Statistics - Methodology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.05998
- Document Type :
- Working Paper