Back to Search
Start Over
Revealing Physical Mechanisms of Pattern Formation and Switching in Ecosystems via Nonequilibrium Landscape and Flux
- Publication Year :
- 2024
-
Abstract
- Spatial patterns are widely observed in numerous nonequilibrium natural systems, often undergoing complex transitions and bifurcations, thereby exhibiting significant importance in many physical and biological systems such as embryonic development, ecosystem desertification, and turbulence. However, how spatial pattern formation emerges and how the spatial pattern switches are not fully understood. Here, we developed a landscape-flux field theory via the spatial mode expansion method to uncover the underlying physical mechanism of the pattern formation and switching. We identified the landscape and flux field as the driving force for spatial dynamics and applied this theory to the critical transitions between spatial vegetation patterns in semi-arid ecosystems, revealing that the nonequilibrium flux drives the switchings of spatial patterns. We uncovered how the pattern switching emerges through the optimal pathways and how fast this occurs via the speed of pattern switching. Furthermore, both the averaged flux and the entropy production rate exhibit peaks near pattern switching boundaries, revealing dynamical and thermodynamical origins for pattern transitions, and further offering early warning signals for anticipating spatial pattern switching. Our work thus reveals physical mechanisms on spatial pattern-switching in semi-arid ecosystems and, more generally, introduces a useful approach for quantifying spatial pattern switching in nonequilibrium systems, which further offers practical applications such as early warning signals for critical transitions of spatial patterns.
- Subjects :
- Physics - Biological Physics
Nonlinear Sciences - Pattern Formation and Solitons
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.03978
- Document Type :
- Working Paper