Back to Search
Start Over
Sensitively searching for microwave dark photons with atomic ensembles
- Publication Year :
- 2024
-
Abstract
- Dark photon is one of the promising candidates of light dark matter and could be detected by using its interaction with standard model particles via kinetic mixings. Here, we propose a feasible approach to detect the dark photons by nondestructively probing these mixing-induced quantum state transitions of atomic ensembles. Compared with the scheme by probing the mixing-induced quantum excitation of single-atom detector, the achievable detection sensitivity can be enhanced theoretically by a factor of $\sqrt{N}$ for the ensemble containing $N$ atoms. Specifically, we show that the dark photons, in both centimeter- and millimeter-wave bands, could be detected by using the artificial atomic ensemble detector, generated by surface-state electrons on liquid Helium. It is estimated that, with the detectable transition probability of $10^{-4}$, the experimental surface-state electrons (with $N = 10^8$ trapped electrons) might provide a feasible approach to search for the dark photons in $18.61-26.88$ $\mu$eV and $496.28-827.13$ $\mu$eV ranges, within about two months. The confidence level can exceed 95\% for the achievable sensitivities being $10^{-14} \sim 10^{-13}$ and $10^{-12} \sim 10^{-11}$, respectively. In principle, the proposal could also be generalized to the other atomic ensemble detectors for the detection of dark photons in different frequency bands.
- Subjects :
- Quantum Physics
Astrophysics - High Energy Astrophysical Phenomena
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.00786
- Document Type :
- Working Paper