Back to Search
Start Over
Numerical analysis of a constrained strain energy minimization problem
- Publication Year :
- 2024
-
Abstract
- We consider a setting in which an evolving surface is implicitly characterized as the zero level of a level set function. Such an implicit surface does not encode any information about the path of a single point on the evolving surface. In the literature different approaches for determining a velocity that induces corresponding paths of points on the surface have been proposed. One of these is based on minimization of the strain energy functional. This then leads to a constrained minimization problem, which has a corresponding equivalent formulation as a saddle point problem. The main topic of this paper is a detailed analysis of this saddle point problem and of a finite element discretization of this problem. We derive well-posedness results for the continuous and discrete problems and optimal error estimates for a finite element discretization that uses standard $H^1$-conforming finite element spaces.<br />Comment: 24 pages, 9 figures
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.19089
- Document Type :
- Working Paper