Back to Search Start Over

Diamine Surface Passivation and Post-Annealing Enhance Performance of Silicon-Perovskite Tandem Solar Cells

Authors :
Taddei, Margherita
Contreras, Hannah
Doan, Hai-Nam
McCarthy, Declan P.
Seo, Seongrok
Westbrook, Robert J. E.
Graham, Daniel J.
Datta, Kunal
Carroy, Perrine
Muñoz, Delfina
Correa-Baena, Juan-Pablo
Barlow, Stephen
Marder, Seth R.
Snaith, Henry J.
Smith, Joel A.
Ginger, David S.
Publication Year :
2024

Abstract

We show that the use of 1,3-diaminopropane (DAP) as a chemical modifier at the perovskite/electron-transport layer (ETL) interface enhances the power conversion efficiency (PCE) of 1.7 eV bandgap FACs mixed-halide perovskite single-junction cells, primarily by boosting the open-circuit voltage (VOC) from 1.06 V to 1.15 V. Adding a post-processing annealing step after C60 evaporation, further improves the fill factor (FF) by 20% from the control to the DAP + post-annealing devices. Using hyperspectral photoluminescence microscopy, we demonstrate that annealing helps improve compositional homogeneity at the top and bottom interfaces of the solar cell, which prevents detrimental bandgap pinning in the devices and improves C60 adhesion. Using time-of-flight secondary ion mass spectrometry, we show that DAP reacts with formamidinium present near the surface of the perovskite lattice to form a larger molecular cation, 1,4,5,6-tetrahydropyrimidinium (THP) that remains at the interface. Combining the use of DAP and the annealing of C60 interface, we fabricate Si-perovskite tandems with PCE of 25.29%, compared to 23.26% for control devices. Our study underscores the critical role of chemical reactivity and thermal post-processing of the C60/Lewis-base passivator interface in minimizing device losses and advancing solar-cell performance of wide-bandgap mixed-cation mixed-halide perovskite for tandem application.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.18756
Document Type :
Working Paper