Back to Search
Start Over
A Bayesian semi-parametric approach to causal mediation for longitudinal mediators and time-to-event outcomes with application to a cardiovascular disease cohort study
- Publication Year :
- 2024
-
Abstract
- Causal mediation analysis of observational data is an important tool for investigating the potential causal effects of medications on disease-related risk factors, and on time-to-death (or disease progression) through these risk factors. However, when analyzing data from a cohort study, such analyses are complicated by the longitudinal structure of the risk factors and the presence of time-varying confounders. Leveraging data from the Atherosclerosis Risk in Communities (ARIC) cohort study, we develop a causal mediation approach, using (semi-parametric) Bayesian Additive Regression Tree (BART) models for the longitudinal and survival data. Our framework allows for time-varying exposures, confounders, and mediators, all of which can either be continuous or binary. We also identify and estimate direct and indirect causal effects in the presence of a competing event. We apply our methods to assess how medication, prescribed to target cardiovascular disease (CVD) risk factors, affects the time-to-CVD death.
- Subjects :
- Statistics - Methodology
Statistics - Applications
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.18739
- Document Type :
- Working Paper