Back to Search
Start Over
On norming systems of linear equations
- Publication Year :
- 2024
-
Abstract
- A system of linear equations $L$ is said to be norming if a natural functional $t_L(\cdot)$ giving a weighted count for the set of solutions to the system can be used to define a norm on the space of real-valued functions on $\mathbb{F}_q^n$ for every $n>0$. For example, Gowers uniformity norms arise in this way. In this paper, we initiate the systematic study of norming linear systems by proving a range of necessary and sufficient conditions for a system to be norming. Some highlights include an isomorphism theorem for the functional $t_L(\cdot)$, a proof that any norming system must be variable-transitive and the classification of all norming systems of rank at most two.<br />Comment: 30 pages
- Subjects :
- Mathematics - Combinatorics
Mathematics - Number Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.18389
- Document Type :
- Working Paper