Back to Search Start Over

An analytical model for the dispersion measure of Fast Radio Burst host galaxies

Authors :
Reischke, Robert
Kovač, Michael
Nicola, Andrina
Hagstotz, Steffen
Schneider, Aurel
Publication Year :
2024

Abstract

The dispersion measure (DM) of fast radio bursts (FRBs) is sensitive to the electron distribution in the Universe, making it a promising probe of cosmology and astrophysical processes such as baryonic feedback. However, cosmological analyses of FRBs require knowledge of the contribution to the observed DM coming from the FRB host. The size and distribution of this contribution is still uncertain, thus significantly limiting current cosmological FRB analyses. In this study, we extend the baryonification (BCM) approach to derive a physically-motivated, analytic model for predicting the host contribution to FRB DMs. By focusing on the statistical properties of FRB host DMs, we find that our simple model is able to reproduce the probability distribution function (PDF) of host halo DMs measured from the CAMELS suite of hydrodynamic simulations, as well as their mass- and redshift dependence. Furthermore, we demonstrate that our model allows for self-consistent predictions of the host DM PDF and the matter power spectrum suppression due to baryonic effects, as observed in these simulations, making it promising for modelling host-DM-related systematics in FRB analyses. In general, we find that the shape of the host DM PDF is determined by the interplay between the FRB and gas distributions in halos. Our findings indicate that more compact FRB profiles require shallower gas profiles (and vice versa) in order to match the observed DM distributions in hydrodynamic simulations. Furthermore, the analytic model presented here shows that the shape of the host DM PDF is highly sensitive to the parameters of the BCM. This suggests that this observable could be used as an interesting test bed for baryonic processes, complementing other probes due to its sensitivity to feedback on galactic scales. We further discuss the main limitations of our analysis, and point out potential avenues for future work.<br />Comment: 13 pages, 12 figures, to be submitted to OJA, comments welcome

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.17682
Document Type :
Working Paper