Cite
Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification
MLA
Philps, Ben, et al. Uncertainty Quantification for White Matter Hyperintensity Segmentation Detects Silent Failures and Improves Automated Fazekas Quantification. 2024. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2411.17571&authtype=sso&custid=ns315887.
APA
Philps, B., Hernandez, M. del C. V., Qin, C., Clancy, U., Sakka, E., Maniega, S. M., Bastin, M. E., Jochems, A. C. C., Wardlaw, J. M., Bernabeu, M. O., & Initiative, A. D. N. (2024). Uncertainty quantification for White Matter Hyperintensity segmentation detects silent failures and improves automated Fazekas quantification.
Chicago
Philps, Ben, Maria del C. Valdes Hernandez, Chen Qin, Una Clancy, Eleni Sakka, Susana Munoz Maniega, Mark E. Bastin, et al. 2024. “Uncertainty Quantification for White Matter Hyperintensity Segmentation Detects Silent Failures and Improves Automated Fazekas Quantification.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2411.17571&authtype=sso&custid=ns315887.