Back to Search Start Over

Tracing Optimization for Performance Modeling and Regression Detection

Authors :
Shahedi, Kaveh
Li, Heng
Lamothe, Maxime
Khomh, Foutse
Publication Year :
2024

Abstract

Software performance modeling plays a crucial role in developing and maintaining software systems. A performance model analytically describes the relationship between the performance of a system and its runtime activities. This process typically examines various aspects of a system's runtime behavior, such as the execution frequency of functions or methods, to forecast performance metrics like program execution time. By using performance models, developers can predict expected performance and thereby effectively identify and address unexpected performance regressions when actual performance deviates from the model's predictions. One common and precise method for capturing performance behavior is software tracing, which involves instrumenting the execution of a program, either at the kernel level (e.g., system calls) or application level (e.g., function calls). However, due to the nature of tracing, it can be highly resource-intensive, making it impractical for production environments where resources are limited. In this work, we propose statistical approaches to reduce tracing overhead by identifying and excluding performance-insensitive code regions, particularly application-level functions, from tracing while still building accurate performance models that can capture performance degradations. By selecting an optimal set of functions to be traced, we can construct optimized performance models that achieve an R-2 score of up to 99% and, sometimes, outperform full tracing models (models using non-optimized tracing data), while significantly reducing the tracing overhead by more than 80% in most cases. Our optimized performance models can also capture performance regressions in our studied programs effectively, demonstrating their usefulness in real-world scenarios. Our approach is fully automated, making it ready to be used in production environments with minimal human effort.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.17548
Document Type :
Working Paper