Back to Search
Start Over
Fekete's lemma in Banach spaces
- Publication Year :
- 2024
-
Abstract
- For a sequence of vectors $\{v_n\}_{n\in\mathbb{N}}$ in the uniformly convex Banach space $X$ which for all $n, m\in \mathbb{N}$ satisfy $\|v_{n+m}\|\le \|v_n + v_m\|$ we show the existence of the limit $\lim_{n\to \infty} \frac{v_n}{n}$. This extends the classical Fekete's subadditivite lemma to Banach space-valued sequences.<br />Comment: 12 pages
- Subjects :
- Mathematics - Functional Analysis
Mathematics - Metric Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.17380
- Document Type :
- Working Paper