Back to Search Start Over

Fekete's lemma in Banach spaces

Authors :
Kulikov, Aleksei
Shao, Feng
Publication Year :
2024

Abstract

For a sequence of vectors $\{v_n\}_{n\in\mathbb{N}}$ in the uniformly convex Banach space $X$ which for all $n, m\in \mathbb{N}$ satisfy $\|v_{n+m}\|\le \|v_n + v_m\|$ we show the existence of the limit $\lim_{n\to \infty} \frac{v_n}{n}$. This extends the classical Fekete's subadditivite lemma to Banach space-valued sequences.<br />Comment: 12 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.17380
Document Type :
Working Paper