Back to Search Start Over

Health AI Developer Foundations

Authors :
Kiraly, Atilla P.
Baur, Sebastien
Philbrick, Kenneth
Mahvar, Fereshteh
Yatziv, Liron
Chen, Tiffany
Sterling, Bram
George, Nick
Jamil, Fayaz
Tang, Jing
Bailey, Kai
Ahmed, Faruk
Goel, Akshay
Ward, Abbi
Yang, Lin
Sellergren, Andrew
Matias, Yossi
Hassidim, Avinatan
Shetty, Shravya
Golden, Daniel
Azizi, Shekoofeh
Steiner, David F.
Liu, Yun
Thelin, Tim
Pilgrim, Rory
Kirmizibayrak, Can
Publication Year :
2024

Abstract

Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by accelerating clinical research, improving workflows and outcomes, and producing novel insights or capabilities. Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations (HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building ML for health applications. The models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs compared to traditional approaches. In addition, we utilize a common interface and style across these models, and prioritize usability to enable developers to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness, and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for ML in healthcare, we emphasize the importance of validation with problem- and population-specific data for each desired usage setting. This technical report will be updated over time as more modalities and features are added.<br />Comment: 16 pages, 8 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.15128
Document Type :
Working Paper