Back to Search
Start Over
Spectral asymptotic formula of Bessel--Riesz commutator
- Publication Year :
- 2024
-
Abstract
- Let $R_{\lambda,j}$ be the $j$-th Bessel--Riesz transform, where $n\geq 1$, $\lambda>0$, and $j=1,\ldots,n+1$. In this article, we establish a Weyl type asymptotic for $[M_f,R_{\lambda,j}]$, the commutator of $R_{\lambda,j}$ with multiplication operator $M_f$, based on building a preliminary result that the endpoint weak Schatten norm of $[M_f,R_{\lambda,j}]$ can be characterised via homogeneous Sobolev norm $\dot{W}^{1,n+1}(\mathbb{R}_+^{n+1})$ of the symbol $f$. Specifically, the asymptotic coefficient is equivalent to $\|f\|_{\dot{W}^{1,n+1}(\mathbb{R}_+^{n+1})}.$ Our main strategy is to relate Bessel--Riesz commutator to classical Riesz commutator via Schur multipliers, and then to establish the boundedness of Schur multipliers.<br />Comment: 37 pages
- Subjects :
- Mathematics - Functional Analysis
47B10, 42B20, 43A85
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.14928
- Document Type :
- Working Paper