Back to Search Start Over

Spectral asymptotic formula of Bessel--Riesz commutator

Authors :
Fan, Zhijie
Li, Ji
Sukochev, Fedor
Zanin, Dmitriy
Publication Year :
2024

Abstract

Let $R_{\lambda,j}$ be the $j$-th Bessel--Riesz transform, where $n\geq 1$, $\lambda>0$, and $j=1,\ldots,n+1$. In this article, we establish a Weyl type asymptotic for $[M_f,R_{\lambda,j}]$, the commutator of $R_{\lambda,j}$ with multiplication operator $M_f$, based on building a preliminary result that the endpoint weak Schatten norm of $[M_f,R_{\lambda,j}]$ can be characterised via homogeneous Sobolev norm $\dot{W}^{1,n+1}(\mathbb{R}_+^{n+1})$ of the symbol $f$. Specifically, the asymptotic coefficient is equivalent to $\|f\|_{\dot{W}^{1,n+1}(\mathbb{R}_+^{n+1})}.$ Our main strategy is to relate Bessel--Riesz commutator to classical Riesz commutator via Schur multipliers, and then to establish the boundedness of Schur multipliers.<br />Comment: 37 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.14928
Document Type :
Working Paper