Back to Search
Start Over
ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array
- Publication Year :
- 2024
-
Abstract
- Neutral atom quantum computing platforms have gained significant attention due to their potential scalability and flexibility in qubit arrangement. In this work, we present a novel zoned architecture for neutral atom quantum compilation, which divides the system into distinct zones: a storage zone and an interaction zone. This architecture optimizes atom placement and interaction scheduling, effectively reducing the operation depth and improving parallelism during compilation. Through a tailored algorithmic approach, we significantly enhance the compilation efficiency and scalability compared to existing methods. Compared to the state-of-the-art Enola platform, our method achieves a 5.4x increase in fidelity when the system need 100 qubits, marking a pivotal advancement in neutral atom quantum computing. Our approach provides a robust framework for future large-scale quantum computations, ensuring both high fidelity and efficient execution.<br />Comment: 10 pages, 7 figures
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.14037
- Document Type :
- Working Paper