Back to Search
Start Over
Local well-posedness for the Schr\'{o}dinger-KdV system in $H^{s_1}\times H^{s_2}$, II
- Publication Year :
- 2024
-
Abstract
- In this paper, we continue the study of the local well-posedness theory for the Schr\"{o}dinger-KdV system in the Sobolev space $H^{s_1}\times H^{s_2}$. We show the local well-posedness in $H^{-3/16}\times H^{-3/4}$ for $\beta = 0$. Combining our work \cite{banchenzhang}, we also have the local well-posedness for $\max\{-3/4,s_1-3\}\leq s_2\leq \min\{4s_1,s_1+2\}$. The result is sharp by using the contraction mapping argument.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.10977
- Document Type :
- Working Paper