Back to Search Start Over

Local well-posedness for the Schr\'{o}dinger-KdV system in $H^{s_1}\times H^{s_2}$, II

Authors :
Ban, Yingzhe
Chen, Jie
Zhang, Ying
Publication Year :
2024

Abstract

In this paper, we continue the study of the local well-posedness theory for the Schr\"{o}dinger-KdV system in the Sobolev space $H^{s_1}\times H^{s_2}$. We show the local well-posedness in $H^{-3/16}\times H^{-3/4}$ for $\beta = 0$. Combining our work \cite{banchenzhang}, we also have the local well-posedness for $\max\{-3/4,s_1-3\}\leq s_2\leq \min\{4s_1,s_1+2\}$. The result is sharp by using the contraction mapping argument.

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.10977
Document Type :
Working Paper