Back to Search Start Over

Understanding Multimodal LLMs: the Mechanistic Interpretability of Llava in Visual Question Answering

Authors :
Yu, Zeping
Ananiadou, Sophia
Publication Year :
2024

Abstract

Understanding the mechanisms behind Large Language Models (LLMs) is crucial for designing improved models and strategies. While recent studies have yielded valuable insights into the mechanisms of textual LLMs, the mechanisms of Multi-modal Large Language Models (MLLMs) remain underexplored. In this paper, we apply mechanistic interpretability methods to analyze the visual question answering (VQA) mechanisms in the first MLLM, Llava. We compare the mechanisms between VQA and textual QA (TQA) in color answering tasks and find that: a) VQA exhibits a mechanism similar to the in-context learning mechanism observed in TQA; b) the visual features exhibit significant interpretability when projecting the visual embeddings into the embedding space; and c) Llava enhances the existing capabilities of the corresponding textual LLM Vicuna during visual instruction tuning. Based on these findings, we develop an interpretability tool to help users and researchers identify important visual locations for final predictions, aiding in the understanding of visual hallucination. Our method demonstrates faster and more effective results compared to existing interpretability approaches. Code: \url{https://github.com/zepingyu0512/llava-mechanism}<br />Comment: preprint

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.10950
Document Type :
Working Paper