Back to Search
Start Over
Universal non-equilibrium scaling of cumulants across a critical point
- Publication Year :
- 2024
-
Abstract
- We study the critical dynamics of a scalar field theory with $Z_2$ symmetry in the dynamic universality class of Model A in two and three spatial dimensions with classical-statistical lattice simulations. In particular, we measure the non-equilibrium behavior of the system under a quench protocol in which the symmetry-breaking external field is changed at a constant rate through the critical point. Using the well-established Kibble-Zurek scaling theory we compute non-equilibrium scaling functions of cumulants of the order parameter up to fourth order. Together with the static critical exponents and the dynamic critical exponent, these fully describe the universal non-equilibrium evolution of the system near the critical point. We further extend the analysis to include finite-size effects and observe good collapse of our data onto two-dimensional universal non-equilibrium and finite-size scaling functions.<br />Comment: 18 pages, 7 figures
- Subjects :
- High Energy Physics - Phenomenology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.10266
- Document Type :
- Working Paper