Back to Search Start Over

Pro-Prophet: A Systematic Load Balancing Method for Efficient Parallel Training of Large-scale MoE Models

Authors :
Wang, Wei
Lai, Zhiquan
Li, Shengwei
Liu, Weijie
Ge, Keshi
Shen, Ao
Su, Huayou
Li, Dongsheng
Publication Year :
2024

Abstract

The size of deep learning models has been increasing to enhance model quality. The linear increase in training computation budget with model size means that training an extremely large-scale model is exceedingly time-consuming. Recently, the Mixture of Expert (MoE) has drawn significant attention as it can scale models to extra-large sizes with a stable computation budget. However, inefficient distributed training of large-scale MoE models hinders their broader application. Specifically, a considerable dynamic load imbalance occurs among devices during training, significantly reducing throughput. Several load-balancing works have been proposed to address the challenge. System-level solutions draw more attention for their hardware affinity and non-disruption of model convergence compared to algorithm-level ones. However, they are troubled by high communication costs and poor communication-computation overlapping. To address these challenges, we propose a systematic load-balancing method, Pro-Prophet, which consists of a planner and a scheduler for efficient parallel training of large-scale MoE models. To adapt to the dynamic load imbalance, we profile training statistics and use them to design Pro-Prophet. For lower communication volume, Pro-Prophet planner determines a series of lightweight load-balancing strategies and efficiently searches for a communication-efficient one for training based on the statistics. For sufficient overlapping of communication and computation, Pro-Prophet scheduler schedules the data-dependent operations based on the statistics and operation features, further improving the training throughput. Experimental results indicate that Pro-Prophet achieves up to 2.66x speedup compared to Deepspeed-MoE and FasterMoE. Additionally, Pro-Prophet achieves a load-balancing enhancement of up to 11.01x when compared to FasterMoE.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.10003
Document Type :
Working Paper