Back to Search Start Over

Second order regularity of solutions of elliptic equations in divergence form with Sobolev coefficients

Authors :
Perelmuter, M. A.
Publication Year :
2024

Abstract

We give $L^p$ estimates for the second derivatives of weak solutions to the Dirichlet problem for equation $\Div(\mathbf{A}\nabla u) = f$ in $\Omega\subset \mathbb{R}^d$ with Sobolev coefficients. In particular, for $f\in L^2(\Omega) \bigcap L^s(\Omega)$ $$\|\Delta u\|_{2} \leq \begin{cases} c_1\|f\|_2 + c_2 \|\nabla \mathbf{A}\|_q^2\|f\|_s, & \text{if } 1 < s < d/2, \frac{1}{2}=\frac{2}{q}+ \frac{1}{s} - \frac{2}{d}\\ c_1\|f\|_2 + c_2 \|\nabla \mathbf{A}\|_4^2\|f\|_s, & \text{if } s > d/2 \end{cases}.$$<br />Comment: 9 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.09378
Document Type :
Working Paper