Back to Search
Start Over
Inelastic Triatom-Atom Quantum Close-Coupling Dynamics in Full Dimensionality: all rovibrational mode quenching of water due to H impact on a six-dimensional potential energy surface
- Publication Year :
- 2024
-
Abstract
- The rovibrational level populations, and subsequent emission in various astrophysical environments, is driven by inelastic collision processes. The available rovibrational rate coefficients for water have been calculated using a number of approximations. We present a numerically exact calculation for the rovibrational quenching for all water vibrational modes due to collisions with atomic hydrogen. The scattering theory implements a quantum close-coupling (CC) method on a high level ab initio six-dimensional (6D) potential energy surface (PES). Total rovibrational quenching cross sections for excited bending levels were compared with earlier results on a 4D PES with the rigid-bender close-coupling (RBCC) approximation. General agreement between 6D-CC and 4D-RBCC calculations are found, but differences are evident including the energy and amplitude of low-energy orbiting resonances. Quenching cross sections from the symmetric and asymmetric stretch modes are provided for the first time. The current 6D-CC calculation provides accurate inelastic data needed for astrophysical modeling.<br />Comment: 20 pages, 5 figures
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.08707
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1021/acs.jpclett.4c02865