Back to Search
Start Over
Nonlinear Hall Effect in Insulators
- Publication Year :
- 2024
-
Abstract
- The nonlinear Hall effect refers to the nonlinear voltage response that is transverse to the applied electric field. Recent studies have shown that the quantum geometric quantities on Fermi surfaces serve as fundamental contributors to the nonlinear Hall effect, suggesting that the nonlinear Hall effect occurs mainly in metals. However, in this work, we demonstrate that insulators can also exhibit the nonlinear Hall effect. We find that for an insulator driven at a finite frequency, a series of frequency dependent quantum geometric quantities from the occupied bands can give rise to a nonvanishing nonlinear Hall conductivity. The nonlinear Hall conductivity is frequency dependent: at resonance, it represents the inter-band transition enabled nonlinear Hall current; near resonance, it represents the nonlinear order polarization transverse to the electric field. We further connect the nonlinear Hall conductivity to the Kleinman conjecture in nonlinear optics and point out that the nonlinear Hall effect is generally allowed in insulators given the driving frequency near resonance. For the candidate materials, we consider the biased Bernal bilayer graphene under uniaxial strain and propose polarization resolved second harmonic microscopy to detect the nonlinear Hall effect there.<br />Comment: 7 pages, 4 figures. Comments are welcome
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.07456
- Document Type :
- Working Paper