Back to Search Start Over

Wigner entropy conjecture and the interference formula in quantum phase space

Authors :
Van Herstraeten, Zacharie
Cerf, Nicolas J.
Publication Year :
2024

Abstract

Wigner-positive quantum states have the peculiarity to admit a Wigner function that is a genuine probability distribution over phase space. The Shannon differential entropy of the Wigner function of such states - called Wigner entropy for brevity - emerges as a fundamental information-theoretic measure in phase space and is subject to a conjectured lower bound, reflecting the uncertainty principle. In this work, we prove that this Wigner entropy conjecture holds true for a broad class of Wigner-positive states known as beam-splitter states, which are obtained by evolving a separable state through a balanced beam splitter and then discarding one mode. Our proof relies on known bounds on the $p$-norms of cross-Wigner functions and on the interference formula, which relates the convolution of Wigner functions to the squared modulus of a cross-Wigner function. Originally discussed in the context of signal analysis, the interference formula is not commonly used in quantum optics although it unveils a strong symmetry exhibited by Wigner functions of pure states. We provide here a simple proof of the formula and highlight some of its implications. Finally, we prove an extended conjecture on the Wigner-R\'enyi entropy of beam-splitter states, albeit in a restricted range for the R\'enyi parameter $\alpha \geq 1/2$.<br />Comment: 12 pages, 6 figures

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.05562
Document Type :
Working Paper