Back to Search
Start Over
Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
- Publication Year :
- 2024
-
Abstract
- Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.<br />Comment: 28 Pages, 10 Figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.01140
- Document Type :
- Working Paper