Back to Search
Start Over
Differentially Private Algorithms for Linear Queries via Stochastic Convex Optimization
- Publication Year :
- 2024
-
Abstract
- This article establishes a method to answer a finite set of linear queries on a given dataset while ensuring differential privacy. To achieve this, we formulate the corresponding task as a saddle-point problem, i.e. an optimization problem whose solution corresponds to a distribution minimizing the difference between answers to the linear queries based on the true distribution and answers from a differentially private distribution. Against this background, we establish two new algorithms for corresponding differentially private data release: the first is based on the differentially private Frank-Wolfe method, the second combines randomized smoothing with stochastic convex optimization techniques for a solution to the saddle-point problem. While previous works assess the accuracy of differentially private algorithms with reference to the empirical data distribution, a key contribution of our work is a more natural evaluation of the proposed algorithms' accuracy with reference to the true data-generating distribution.
- Subjects :
- Statistics - Methodology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.00921
- Document Type :
- Working Paper