Back to Search Start Over

The Tangle Hypothesis

Authors :
Ayala, David
Francis, John
Publication Year :
2024

Abstract

We introduce an $(\infty,1)$-category ${\sf Bord}_1^{\sf fr}(\mathbb{R}^n)$, the morphisms in which are framed tangles in $\mathbb{R}^n\times \mathbb{D}^1$. We prove that ${\sf Bord}_1^{\sf fr}(\mathbb{R}^n)$ has the universal mapping out property of the 1-dimensional Tangle Hypothesis of Baez--Dolan and Hopkins--Lurie: it is the rigid $\mathcal{E}_n$-monoidal $(\infty,1)$-category freely generated by a single object. Applying this theorem to a dualizable object of a braided monoidal $(\infty,1)$-category gives link invariants, generalizing the Reshetikhin--Turaev invariants.<br />Comment: 103 pages, 12 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.23965
Document Type :
Working Paper