Back to Search
Start Over
TRENDY: Gene Regulatory Network Inference Enhanced by Transformer
- Publication Year :
- 2024
-
Abstract
- Gene regulatory networks (GRNs) play a crucial role in the control of cellular functions. Numerous methods have been developed to infer GRNs from gene expression data, including mechanism-based approaches, information-based approaches, and more recent deep learning techniques, the last of which often overlooks the underlying gene expression mechanisms. In this work, we introduce TRENDY, a novel GRN inference method that integrates transformer models to enhance the mechanism-based WENDY approach. Through testing on both simulated and experimental datasets, TRENDY demonstrates superior performance compared to existing methods. Furthermore, we apply this transformer-based approach to three additional inference methods, showcasing its broad potential to enhance GRN inference.
- Subjects :
- Quantitative Biology - Molecular Networks
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.21295
- Document Type :
- Working Paper