Back to Search
Start Over
Discovering Leitmotifs in Multidimensional Time Series
- Publication Year :
- 2024
-
Abstract
- A leitmotif is a recurring theme in literature, movies or music that carries symbolic significance for the piece it is contained in. When this piece can be represented as a multi-dimensional time series (MDTS), such as acoustic or visual observations, finding a leitmotif is equivalent to the pattern discovery problem, which is an unsupervised and complex problem in time series analytics. Compared to the univariate case, it carries additional complexity because patterns typically do not occur in all dimensions but only in a few - which are, however, unknown and must be detected by the method itself. In this paper, we present the novel, efficient and highly effective leitmotif discovery algorithm LAMA for MDTS. LAMA rests on two core principals: (a) a leitmotif manifests solely given a yet unknown number of sub-dimensions - neither too few, nor too many, and (b) the set of sub-dimensions are not independent from the best pattern found therein, necessitating both problems to be approached in a joint manner. In contrast to most previous methods, LAMA tackles both problems jointly - instead of independently selecting dimensions (or leitmotifs) and finding the best leitmotifs (or dimensions). Our experimental evaluation on a novel ground-truth annotated benchmark of 14 distinct real-life data sets shows that LAMA, when compared to four state-of-the-art baselines, shows superior performance in detecting meaningful patterns without increased computational complexity.
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.12293
- Document Type :
- Working Paper