Back to Search Start Over

Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior

Authors :
Suk, Julian
Nannini, Guido
Rygiel, Patryk
Brune, Christoph
Pontone, Gianluca
Redaelli, Alberto
Wolterink, Jelmer M.
Publication Year :
2024

Abstract

Cardiovascular hemodynamic fields provide valuable medical decision markers for coronary artery disease. Computational fluid dynamics (CFD) is the gold standard for accurate, non-invasive evaluation of these quantities in vivo. In this work, we propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics based on steady-state priors. We introduce deep vectorised operators, a modelling framework for discretisation independent learning on infinite-dimensional function spaces. The underlying neural architecture is a neural field conditioned on hemodynamic boundary conditions. Importantly, we show how relaxing the requirement of point-wise action to permutation-equivariance leads to a family of models that can be parametrised by message passing and self-attention layers. We evaluate our approach on a dataset of 74 stenotic coronary arteries extracted from coronary computed tomography angiography (CCTA) with patient-specific pulsatile CFD simulations as ground truth. We show that our model produces accurate estimates of the pulsatile velocity and pressure while being agnostic to re-sampling of the source domain (discretisation independence). This shows that deep vectorised operators are a powerful modelling tool for cardiovascular hemodynamics estimation in coronary arteries and beyond.<br />Comment: Preprint. Under Review

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.11920
Document Type :
Working Paper