Back to Search
Start Over
SLERP-TVDRK (STVDRK) Methods for Ordinary Differential Equations on Spheres
- Publication Year :
- 2024
-
Abstract
- We mimic the conventional explicit Total Variation Diminishing Runge-Kutta (TVDRK) schemes and propose a class of numerical integrators to solve differential equations on a unit sphere. Our approach utilizes the exponential map inherent to the sphere and employs spherical linear interpolation (SLERP). These modified schemes, named SLERP-TVDRK methods or STVDRK, offer improved accuracy compared to typical projective RK methods. Furthermore, they eliminate the need for any projection and provide a straightforward implementation. While we have successfully constructed STVDRK schemes only up to third-order accuracy, we explain the challenges in deriving STVDRK-r for r \ge 4. To showcase the effectiveness of our approach, we will demonstrate its application in solving the eikonal equation on the unit sphere and simulating p-harmonic flows using our proposed method.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.10420
- Document Type :
- Working Paper