Back to Search
Start Over
Hyperstability of some functional equations in modular spaces
- Publication Year :
- 2024
-
Abstract
- In this paper, we investigate some hyperstability results, inspired by the concept of Ulam stability, for the following functional equations: \begin{equation} \varphi(x+y)+\varphi(x-y)=2\varphi(x)+2\varphi(y) \end{equation} \begin{equation} \varphi(ax+by) = A\varphi(x)+B\varphi(y)+C \end{equation} \begin{equation}\label{eqnd} f\left(\sum_{i=1}^{m}x_{i}\right)+\sum_{1\leq i<j\leq m}f\big(x_{i}-x_{j}\big)=m\sum_{i=1}^{m}f(x_{i}) \end{equation} in modular spaces.
- Subjects :
- Mathematics - Functional Analysis
39B22, 39B52, 39B82
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.09082
- Document Type :
- Working Paper