Back to Search
Start Over
The existence of a bounded linear extension operator for $L^{s,p}(\mathbb{R}^n)$ when $\frac{n}{p}<\{s\}$
- Publication Year :
- 2024
-
Abstract
- Let $L^{s,p}(\mathbb{R}^n)$ denote the homogeneous Sobolev-Slobodeckij space. In this paper, we demonstrate the existence of a bounded linear extension operator from the jet space $J^{\lfloor s \rfloor}_E L^{s,p}(\mathbb{R}^n)$ to $L^{s,p}(\mathbb{R}^n)$ for any $E \subseteq \mathbb{R}^n$, $p \in [1, \infty)$, and $s \in (0, \infty)$ satisfying $\frac{n}{p} < \{s\}$, where $\{s\}$ represents the fractional part of $s$. Our approach builds upon the classical Whitney extension operator and uses the method of exponentially decreasing paths.
- Subjects :
- Mathematics - Classical Analysis and ODEs
46E35
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.07367
- Document Type :
- Working Paper