Back to Search Start Over

The existence of a bounded linear extension operator for $L^{s,p}(\mathbb{R}^n)$ when $\frac{n}{p}<\{s\}$

Authors :
Li, Han
Publication Year :
2024

Abstract

Let $L^{s,p}(\mathbb{R}^n)$ denote the homogeneous Sobolev-Slobodeckij space. In this paper, we demonstrate the existence of a bounded linear extension operator from the jet space $J^{\lfloor s \rfloor}_E L^{s,p}(\mathbb{R}^n)$ to $L^{s,p}(\mathbb{R}^n)$ for any $E \subseteq \mathbb{R}^n$, $p \in [1, \infty)$, and $s \in (0, \infty)$ satisfying $\frac{n}{p} &lt; \{s\}$, where $\{s\}$ represents the fractional part of $s$. Our approach builds upon the classical Whitney extension operator and uses the method of exponentially decreasing paths.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.07367
Document Type :
Working Paper