Back to Search
Start Over
Large Synthetic Datasets for Machine Learning Applications in Power Systems
- Publication Year :
- 2024
-
Abstract
- With the ongoing energy transition, power grids are evolving fast. They operate more and more often close to their technical limit, under more and more volatile conditions. Fast, essentially real-time computational approaches to evaluate their operational safety, stability and reliability are therefore highly desirable. Machine Learning methods have been advocated to solve this challenge, however they are heavy consumers of training and testing data, while historical operational data for real-world power grids are hard if not impossible to access. This manuscript describes an algorithmic approach for generating large datasets of power injections in electric power grids. The method allows one to generate arbitrarily large time series from the knowledge of the grid -- the admittance of its lines as well as the location, type and capacity of its power generators -- and aggregated power consumption data, such as the national load data given by ENTSO-E. The obtained datasets are statistically validated against real-world data.<br />Comment: 15 pages, 8 figures, 2 tables. Dataset available at https://zenodo.org/records/13378476
- Subjects :
- Electrical Engineering and Systems Science - Systems and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2410.03365
- Document Type :
- Working Paper