Back to Search Start Over

Deterministic generation of photonic entangled states using decoherence-free subspaces

Authors :
Rubies-Bigorda, Oriol
Masson, Stuart J.
Yelin, Susanne F.
Asenjo-Garcia, Ana
Publication Year :
2024

Abstract

We propose the use of collective states of matter as a resource for the deterministic generation of quantum states of light, which are fundamental for quantum information technologies. Our minimal model consists of three emitters coupled to a half-waveguide, i.e., a one-dimensional waveguide terminated by a mirror. Photon-mediated interactions between the emitters result in the emergence of bright and dark states. The dark states form a decoherence-free subspace, protected from dissipation. Local driving of the emitters and control of their resonance frequencies allows to perform arbitrary quantum gates within the decoherence-free subspace. Coupling to bright states facilitates photon emission, thereby enabling the realization of quantum gates between light and matter. We demonstrate that sequential application of these gates leads to the generation of photonic entangled states, such as Greenberger-Horne-Zeilinger and one- and two-dimensional cluster states.

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.03325
Document Type :
Working Paper