Back to Search Start Over

Veech's theorem of higher order

Authors :
Qiu, Jiahao
Ye, Xiangdong
Publication Year :
2024

Abstract

For an abelian group $G$, $\vec{g}=(g_1,\ldots,g_d)\in G^d$ and $\epsilon=(\epsilon(1),\ldots,\epsilon(d))\in \{0,1\}^d$, let $\vec{g}\cdot \epsilon=\prod_{i=1}^{d}g_i^{\epsilon(i)}$. In this paper, it is shown that for a minimal system $(X,G)$ with $G$ being abelian, $(x,y)\in \mathbf{RP}^{[d]}$ if and only if there exists a sequence $\{\vec{g}_n\}_{n\in \mathbb{N}}\subseteq G^d$ and points $z_{\epsilon}\in X,\epsilon\in \{0,1\}^d$ with $z_{\vec{0}}=y$ such that for every $\epsilon\in \{0,1\}^d\backslash\{ \vec{0}\}$, \[ \lim_{n\to\infty}(\vec{g}_n\cdot\epsilon)x= z_\epsilon\quad \mathrm{and} \quad \lim_{n\to\infty}(\vec{g}_n\cdot\epsilon)^{-1}z_{\vec{1}}=z_{\vec{1}-\epsilon}, \] where $\mathbf{RP}^{[d]}$ is the regionally proximal relation of order $d$.

Subjects

Subjects :
Mathematics - Dynamical Systems

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.01663
Document Type :
Working Paper