Back to Search
Start Over
Hopf algebras with the dual Chevalley property of discrete corepresentation type
- Publication Year :
- 2024
-
Abstract
- We try to classify Hopf algebras with the dual Chevalley property of discrete corepresentation type over an algebraically closed field $\Bbb{k}$ with characteristic 0. For such Hopf algebra $H$, we characterize the link quiver of $H$ and determine the structures of the link-indecomposable component $H_{(1)}$ containing $\Bbb{k}1$. Besides, we construct an infinite-dimensional non-pointed non-cosemisimple link-indecomposable Hopf algebra $H(e_{\pm 1}, f_{\pm 1}, u, v)$ with the dual Chevalley property of discrete corepresentation type.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.20292
- Document Type :
- Working Paper