Back to Search
Start Over
The Defining Characteristic Case of the Representations of $\mathrm{GL}_{n}$ and $\mathrm{SL}_{n}$ over Principal Ideal Local Rings
- Publication Year :
- 2024
-
Abstract
- Let $W_{r}(\mathbb{F}_{q})$ be the ring of Witt vectors of length $r$ with residue field $\mathbb{F}_{q}$ of characteristic $p$. In this paper, we study the defining characteristic case of the representations of $\mathrm{GL}_{n}$ and $\mathrm{SL}_{n}$ over the principal ideal local rings $W_{r}(\mathbb{F}_{q})$ and $\mathbb{F}_{q}[t]/t^{r}$. Let ${\mathbf{G}}$ be either $\mathrm{GL}_{n}$ or $\mathrm{SL}_{n}$ and $F$ a perfect field of characteristic $p$, we prove that for most $p$ the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}_{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}_{q}[t]/t^{r})]$ are not stably equivalent of Morita type. Thus, the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}_{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}_{q}[t]/t^{r})]$ are not isomorphic in the defining characteristic case.<br />Comment: 10 pages, comments are welcome!
- Subjects :
- Mathematics - Representation Theory
Mathematics - Group Theory
20C20, 20G05
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.17982
- Document Type :
- Working Paper