Back to Search
Start Over
Demonstration of entanglement distribution over 155 km metropolitan fiber using a silicon nanophotonic chip
- Publication Year :
- 2024
-
Abstract
- Transmitting an entangled state over an extended distance is crucial for the development of quantum networks. Previous demonstrations of transmitting entangled photons over long distance using satellites or fibers have use entangled photon pairs generated from bulk crystal arrangements. An alternative approach would be to generate photon pairs using silicon-on-insulator (SOI) chips. Despite numerous proof-of-concept studies, no long range distribution has been achieved using this platform because of the challenge of getting sufficient off-chip brightness. We report a SOI platform that provides an off-chip entangled photon pair brightness of between 8,000 to 460,000 pairs per second. This exceeds previous reports by three orders of magnitude in brightness. The entanglement fidelity is 99.85(6)% and 97.90(3)% respectively. Measuring one photon locally, and transmitting the other over 93 km of deployed fiber (link loss of 40 dB), achieves a count rate of 132 pairs per second with an entanglement fidelity of 93.3(3)%, after solving the additional challenges of chromatic dispersion. The source can be pumped harder to enable transmission of entangled photons over 155 km of deployed fiber (link loss of 66 dB) at a rate of 0.7 pairs per second, with an entanglement fidelity of 87.6(5)%. These results demonstrate that SOI nanophotonic chips can perform competitively with bulk crystal sources and represent an important step toward building quantum networks using integrated nanophotonic platforms.
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.17558
- Document Type :
- Working Paper