Back to Search
Start Over
Inferring Scientific Cross-Document Coreference and Hierarchy with Definition-Augmented Relational Reasoning
- Publication Year :
- 2024
-
Abstract
- We address the fundamental task of inferring cross-document coreference and hierarchy in scientific texts, which has important applications in knowledge graph construction, search, recommendation and discovery. LLMs can struggle when faced with many long-tail technical concepts with nuanced variations. We present a novel method which generates context-dependent definitions of concept mentions by retrieving full-text literature, and uses the definitions to enhance detection of cross-document relations. We further generate relational definitions, which describe how two concept mentions are related or different, and design an efficient re-ranking approach to address the combinatorial explosion involved in inferring links across papers. In both fine-tuning and in-context learning settings we achieve large gains in performance. We provide analysis of generated definitions, shedding light on the relational reasoning ability of LLMs over fine-grained scientific concepts.
- Subjects :
- Computer Science - Computation and Language
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.15113
- Document Type :
- Working Paper