Back to Search
Start Over
VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge
- Publication Year :
- 2024
-
Abstract
- Detecting complex anomalies on massive amounts of data is a crucial task in Industry 4.0, best addressed by deep learning. However, available solutions are computationally demanding, requiring cloud architectures prone to latency and bandwidth issues. This work presents VARADE, a novel solution implementing a light autoregressive framework based on variational inference, which is best suited for real-time execution on the edge. The proposed approach was validated on a robotic arm, part of a pilot production line, and compared with several state-of-the-art algorithms, obtaining the best trade-off between anomaly detection accuracy, power consumption and inference frequency on two different edge platforms.
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.14816
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1145/3649329.3655691