Back to Search
Start Over
SDBA: A Stealthy and Long-Lasting Durable Backdoor Attack in Federated Learning
- Publication Year :
- 2024
-
Abstract
- Federated Learning is a promising approach for training machine learning models while preserving data privacy, but its distributed nature makes it vulnerable to backdoor attacks, particularly in NLP tasks while related research remains limited. This paper introduces SDBA, a novel backdoor attack mechanism designed for NLP tasks in FL environments. Our systematic analysis across LSTM and GPT-2 models identifies the most vulnerable layers for backdoor injection and achieves both stealth and long-lasting durability through layer-wise gradient masking and top-k% gradient masking within these layers. Experiments on next token prediction and sentiment analysis tasks show that SDBA outperforms existing backdoors in durability and effectively bypasses representative defense mechanisms, with notable performance in LLM such as GPT-2. These results underscore the need for robust defense strategies in NLP-based FL systems.<br />Comment: 13 pages, 13 figures This work has been submitted to the IEEE for possible publication
- Subjects :
- Computer Science - Machine Learning
Computer Science - Cryptography and Security
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.14805
- Document Type :
- Working Paper