Back to Search
Start Over
Bose-Fermi $N$-polaron state emergence from correlation-mediated blocking of phase separation
- Publication Year :
- 2024
-
Abstract
- We study $N$ fermionic impurities in a one-dimensional lattice bosonic bath at unit filling. Using DMRG and mixed boundary conditions -- closed for bosons, open for fermions -- we find an $N$-polaron ground state replacing phase separation at high interspecies repulsion. This tightly bound state of clustered particles emerges due to strong impurity-bath correlations which induce large impurity-impurity correlations, that we quantify via the von Neumann entropy and bipartite mutual information respectively. This system also reveals a fermionic self-localization effect from a Mott insulator background due to local correlations between the impurities and the bath. The growth of long-range correlations breaks this Mott phase, resulting in the transition to localized impurity clusters. Finally, we show that there is a critical impurity number, which depends on intraspecies bosonic interaction, beyond which phase separation is recovered.<br />Comment: 9 pages, 6 figures
- Subjects :
- Condensed Matter - Quantum Gases
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.13785
- Document Type :
- Working Paper