Back to Search Start Over

Deep Generative Adversarial Network for Occlusion Removal from a Single Image

Authors :
Jonna, Sankaraganesh
Medhi, Moushumi
Sahay, Rajiv Ranjan
Publication Year :
2024

Abstract

Nowadays, the enhanced capabilities of in-expensive imaging devices have led to a tremendous increase in the acquisition and sharing of multimedia content over the Internet. Despite advances in imaging sensor technology, annoying conditions like \textit{occlusions} hamper photography and may deteriorate the performance of applications such as surveillance, detection, and recognition. Occlusion segmentation is difficult because of scale variations, illumination changes, and so on. Similarly, recovering a scene from foreground occlusions also poses significant challenges due to the complexity of accurately estimating the occluded regions and maintaining coherence with the surrounding context. In particular, image de-fencing presents its own set of challenges because of the diverse variations in shape, texture, color, patterns, and the often cluttered environment. This study focuses on the automatic detection and removal of occlusions from a single image. We propose a fully automatic, two-stage convolutional neural network for fence segmentation and occlusion completion. We leverage generative adversarial networks (GANs) to synthesize realistic content, including both structure and texture, in a single shot for inpainting. To assess zero-shot generalization, we evaluated our trained occlusion detection model on our proposed fence-like occlusion segmentation dataset. The dataset can be found on GitHub.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.13242
Document Type :
Working Paper