Back to Search Start Over

A Learning-based Quadcopter Controller with Extreme Adaptation

Authors :
Zhang, Dingqi
Loquercio, Antonio
Tang, Jerry
Wang, Ting-Hao
Malik, Jitendra
Mueller, Mark W.
Publication Year :
2024

Abstract

This paper introduces a learning-based low-level controller for quadcopters, which adaptively controls quadcopters with significant variations in mass, size, and actuator capabilities. Our approach leverages a combination of imitation learning and reinforcement learning, creating a fast-adapting and general control framework for quadcopters that eliminates the need for precise model estimation or manual tuning. The controller estimates a latent representation of the vehicle's system parameters from sensor-action history, enabling it to adapt swiftly to diverse dynamics. Extensive evaluations in simulation demonstrate the controller's ability to generalize to unseen quadcopter parameters, with an adaptation range up to 16 times broader than the training set. In real-world tests, the controller is successfully deployed on quadcopters with mass differences of 3.7 times and propeller constants varying by more than 100 times, while also showing rapid adaptation to disturbances such as off-center payloads and motor failures. These results highlight the potential of our controller in extreme adaptation to simplify the design process and enhance the reliability of autonomous drone operations in unpredictable environments. The video and code are at: https://github.com/muellerlab/xadapt_ctrl<br />Comment: 12 pages, 9 figures

Subjects

Subjects :
Computer Science - Robotics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.12949
Document Type :
Working Paper