Back to Search
Start Over
Comparison principle for general nonlocal Hamilton-Jacobi equations with superlinear gradient
- Publication Year :
- 2024
-
Abstract
- We obtain the comparison principle for discontinuous viscosity sub- and supersolutions of nonlocal Hamilton-Jacobi equations, with superlinear and coercive gradient terms. The nonlocal terms are integro-differential operators in L\'evy form, with general measures: $x$-dependent, possibly degenerate and without any restriction on the order. The measures must satisfy a combined Wasserstein/Total Variation-continuity assumption, which is one of the weakest conditions used in the context of viscosity approach for this type of integro-differential PDEs. The proof relies on a regularizing effect due to the gradient growth. We present several examples of applications to PDEs with different types of nonlocal operators (measures with density, operators of variable order, L\'evy-It\^o operators).
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.11124
- Document Type :
- Working Paper