Back to Search
Start Over
Machine Learning for Public Good: Predicting Urban Crime Patterns to Enhance Community Safety
- Publication Year :
- 2024
-
Abstract
- In recent years, urban safety has become a paramount concern for city planners and law enforcement agencies. Accurate prediction of likely crime occurrences can significantly enhance preventive measures and resource allocation. However, many law enforcement departments lack the tools to analyze and apply advanced AI and ML techniques that can support city planners, watch programs, and safety leaders to take proactive steps towards overall community safety. This paper explores the effectiveness of ML techniques to predict spatial and temporal patterns of crimes in urban areas. Leveraging police dispatch call data from San Jose, CA, the research goal is to achieve a high degree of accuracy in categorizing calls into priority levels particularly for more dangerous situations that require an immediate law enforcement response. This categorization is informed by the time, place, and nature of the call. The research steps include data extraction, preprocessing, feature engineering, exploratory data analysis, implementation, optimization and tuning of different supervised machine learning models and neural networks. The accuracy and precision are examined for different models and features at varying granularity of crime categories and location precision. The results demonstrate that when compared to a variety of other models, Random Forest classification models are most effective in identifying dangerous situations and their corresponding priority levels with high accuracy (Accuracy = 85%, AUC = 0.92) at a local level while ensuring a minimum amount of false negatives. While further research and data gathering is needed to include other social and economic factors, these results provide valuable insights for law enforcement agencies to optimize resources, develop proactive deployment approaches, and adjust response patterns to enhance overall public safety outcomes in an unbiased way.<br />Comment: 19 pages, 20 figures
- Subjects :
- Computer Science - Machine Learning
Computer Science - Computers and Society
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.10838
- Document Type :
- Working Paper