Back to Search
Start Over
Boolean Functions with Small Approximate Spectral Norm
- Publication Year :
- 2024
-
Abstract
- The sum of the absolute values of the Fourier coefficients of a function $f:\mathbb{F}_2^n \to \mathbb{R}$ is called the spectral norm of $f$. Green and Sanders' quantitative version of Cohen's idempotent theorem states that if the spectral norm of $f:\mathbb{F}_2^n \to \{0,1\}$ is at most $M$, then the support of $f$ belongs to the ring of sets generated by at most $\ell(M)$ cosets, where $\ell(M)$ is a constant that only depends on $M$. We prove that the above statement can be generalized to \emph{approximate} spectral norms if and only if the support of $f$ and its complement satisfy a certain arithmetic connectivity condition. In particular, our theorem provides a new proof of the quantitative Cohen's theorem for $\mathbb{F}_2^n$.
- Subjects :
- Computer Science - Discrete Mathematics
Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.10634
- Document Type :
- Working Paper