Back to Search Start Over

SplatSim: Zero-Shot Sim2Real Transfer of RGB Manipulation Policies Using Gaussian Splatting

Authors :
Qureshi, Mohammad Nomaan
Garg, Sparsh
Yandun, Francisco
Held, David
Kantor, George
Silwal, Abhisesh
Publication Year :
2024

Abstract

Sim2Real transfer, particularly for manipulation policies relying on RGB images, remains a critical challenge in robotics due to the significant domain shift between synthetic and real-world visual data. In this paper, we propose SplatSim, a novel framework that leverages Gaussian Splatting as the primary rendering primitive to reduce the Sim2Real gap for RGB-based manipulation policies. By replacing traditional mesh representations with Gaussian Splats in simulators, SplatSim produces highly photorealistic synthetic data while maintaining the scalability and cost-efficiency of simulation. We demonstrate the effectiveness of our framework by training manipulation policies within SplatSim and deploying them in the real world in a zero-shot manner, achieving an average success rate of 86.25%, compared to 97.5% for policies trained on real-world data. Videos can be found on our project page: https://splatsim.github.io

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.10161
Document Type :
Working Paper