Back to Search
Start Over
Stability Margins of Neural Network Controllers
- Publication Year :
- 2024
-
Abstract
- We present a method to train neural network controllers with guaranteed stability margins. The method is applicable to linear time-invariant plants interconnected with uncertainties and nonlinearities that are described by integral quadratic constraints. The type of stability margin we consider is the disk margin. Our training method alternates between a training step to maximize reward and a stability margin-enforcing step. In the stability margin enforcing-step, we solve a semidefinite program to project the controller into the set of controllers for which we can certify the desired disk margin.
- Subjects :
- Electrical Engineering and Systems Science - Systems and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.09184
- Document Type :
- Working Paper